Sains Malaysiana 54(1)(2025): 151-164
http://doi.org/10.17576/jsm-2025-5401-12
Biological
Control of Aspergillus flavus with Pseudozyma hubeiensisYeast from Nutmeg (Myristica fragrans Houtt.)
(Kawalan Biologi Aspergillus flavus dengan Yis Pseudozyma hubeiensis daripada Buah Pala (Myristica fragrans Houtt.))
DWI N
SUSILOWATI1, CAHYANI HASNA DESWANTI2, NANI RADIASTUTI2,
SRI RAHAJOENINGSIH1, YADI SURYADI1,*,
SUPRIADI3, NURUL HIDAYAH3, SRI WIDAWATI4 &
NINIK SETYOWATI5
1Research Centre for Horticulture-National
Research and Innovation Agency, Jl. Raya Jakarta-Bogor km 46, Cibinong Bogor
16915, West Java Indonesia
2Dept. of Biology, Fac. of Science and Technology - Syarif Hidayatullah Islamic
University Jakarta, Indonesia
3Research Centre for Estate Crops- National Research and Innovation
Agency, Jl Raya Jakarta-Bogor Km46, Cibinong Bogor
16915, West Java Indonesia
4Research Centre for Applied Microbiology- National Research and
Innovation Agency, Jl Raya Jakarta-Bogor Km46,
Cibinong Bogor 16915, West Java Indonesia
5Research Centre for Applied Botany - National Research and
Innovation Agency, Jl Raya Jakarta-Bogor Km46,
Cibinong Bogor 16915, West Java Indonesia
Received: 11
March 2024/Accepted: 28 October 2024
Abstract
Yeasts
are potential biocontrol agents for Aspergillus flavus, an
aflatoxin-producing fungus that is present in various agricultural products,
including nutmeg. This study aimed to obtain yeast isolates from nutmeg (seeds,
pulps, and leaves), characterise them, and identify their antagonistic effects
on A. flavus. The antagonistic activities toward A. flavus were
determined by a dual-culture method. Moreover, the possible mechanism
responsible for these antagonistic effects was also analysed. The results
showed that 51 yeast isolates were successfully isolated from nutmeg. The
inhibition percentages of 47.25 ± 1.66% (isolate DP 1341a) and 55.98 ± 1.31%
(isolate DP 1342) were statistically significant (p < 0.05). The
antagonistic mechanisms of the DP 1341a isolate were associated with the
production of volatile organic compounds (32.79 ± 1.01%), a chitinolytic index
(2.51 ± 0.55), and hyperparasitism but not toxin
activity. Moreover, the DP 1342 isolate produced volatile organic compounds
(54.33 ± 3.13%), exhibited toxin activity (2.74 ± 0.22) and exhibited hyperparasitism but did not exhibit chitinase activity.
Molecular identification showed that the two yeast isolates (DP 1341a and DP
1342) were identified as Pseudozyma hubeiensiswith sequence similarity > 99%.
Therefore, the selected yeast isolates, P. hubeiensis DP 1341a and DP 1342, could be further developed as biological control agents
for A. flavus. This finding will also be useful for improving biological
control agents as an eco-friendly and economically viable disease management
strategy.
Keywords:
Antagonist: Aspergillus flavus; Myristica fragrans; Pseudozyma hubeiensis; yeasts
Abstrak
Yis merupakan agen kawalan bio yang berpotensi untuk Aspergillus flavus, iaitu sejenis kulat penghasil aflatoksin, yang hadir dalam pelbagai produk pertanian termasuk buah pala.
Kajian ini bertujuan untuk memperoleh pencilan yis daripada buah pala (biji, pulpa dan daun), dan kemudian mencirikan serta mengenal pasti aktiviti antagonis terhadap A. flavus. Aktiviti antagonis terhadap A. flavus ditentukan dengan kaedah dwi-kultur. Selain itu, mekanisme yang mungkin bertanggungjawab bagi kesan antagonis juga dianalisis. Hasil kajian menunjukkan 51 pencilan yis berjaya dipencilkan daripada buah pala. Peratusan perencatan sebanyak 47.25 ±
1.66% (pencilan DP 1341a) dan 55.98 ± 1.31% (pencilan DP 1342) adalah signifikan secara statistik (p < 0.05). Mekanisme antagonis pencilan DP 1341a dikaitkan dengan pengeluaran sebatian organik meruap (32.79 ± 1.01%), indeks kitinolitik (2.51 ± 0.55), hiperparasitisme, tetapi tidak menghasilkan aktiviti toksin. Manakala, pencilan DP 1342 menghasilkan sebatian organik meruap (54.33 ± 3.13%), menunjukkan aktiviti toksin (2.74 ± 0.22) dan hiperparasit, tetapi tidak menunjukkan aktiviti kitinase. Pencirian molekul menunjukkan bahawa kedua-dua pencilan yis tersebut (DP 1341a dan DP 1342) telah dikenal pasti sebagai Pseudozyma hubeiensis dengan persamaan jujukan > 99%. Oleh itu, pencilan yis P. hubeiensis DP 1341a dan DP 1342 yang terpilih boleh dibangunkan sebagai agen kawalan biologi bagi A. flavus. Penemuan ini juga berguna untuk penambahbaikan agen kawalan biologi sebagai strategi pengurusan penyakit yang mesra alam dan berdaya maju dari segi ekonomi.
Kata kunci: Antagonis; Aspergillus
flavus; Myristica fragrans; Pseudozyma hubeiensis; yis
REFERENCES
Abdel‐Kareem, M.M., Rasmey, A.M. & Zohri, A.A.
2019. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces
cerevisiae against the aflatoxigenic Aspergillus flavus. Letters
in Applied Microbiology 68(2): 104-111.
Aiyama, R., Trivittayasil,
V. & Tsuta, M. 2018. Discrimination of aflatoxin
contamination level in nutmeg by fluorescence fingerprint measurement. Food
Control 85: 113-118.
Akocak, P.B., Churey,
J.J. & Worobo, R.W. 2015. Antagonistic effect of
chitinolytic Pseudomonas and Bacillus on the growth of fungal
hyphae and spores of aflatoxigenic Aspergillus flavus. Food
Bioscience 10(1): 48-58.
Allen, T.W., Burpee, L.L. & Buck, J.W.
2004. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa. Canadian Journal of Microbiology 50(12): 1041-1048.
Avis, T.J. & Bélanger,
R.R. 2002. Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS
Yeast Research 2(1): 5-8.
Belda, I., Ruiz, J., Alonso, A., Marquina, D. & Santos, A. 2017. The biology of Pichia membranifaciens killer toxins. Toxins 9(4): 112.
Campagnollo, F.B., Mousavi, K.A., Borges, L.L., Bonato, M.A., Fakhri, Y., Barbalho,
C.B., Barbalho, R.L., Corassin,
C.H. & Oliveira, C.A. 2020. In vitro and in vivo capacity of
yeast-based products to bind to aflatoxins B1 and M1 in media and foodstuffs: A
systematic review and meta-analysis. Food Research International 137: 109505.
Cao, Z., Xia, W., Zhang, X., Yuan, H.,
Guan, D. & Gao, L. 2020. Hepatotoxicity of nutmeg: A pilot study based on
metabolomics. Biomedicine and Pharmacotherapy 131: 110780.
Citanirmala, N.M.V., Rahayu,
W.P. & Hariyadi, R.W. 2016. Kajian penerapan peraturan Menteri Pertanian Nomor 53 Tahun 2012 untuk pengendalian aflatoksin pada pala. Jurnal Mutu Pangan: Indonesian Journal of Food Quality 3(1): 58-64.
Choińska, R., Piasecka-Jóźwiak,
K., Chabłowska, B., Dumka, J. & Łukaszewicz, A. 2020. Biocontrol ability and volatile
organic compounds production as a putative mode of action of yeast strains
isolated from organic grapes and rye grains. Antonie van Leeuwenhoek 113(8): 1135-1146.
Contarino, R., Brighina,
S., Fallico, B., Cirvilleri,
G., Parafati, L. & Restuccia,
C. 2019. Volatile organic compounds (VOCs) are produced by biocontrol yeasts. Food
Microbiology 82: 70-74.
Dennis, C. & Webster, J. 1971.
Antagonistic properties of species-groups of Trichoderma. II production of
volatile antibiotics. Transactions of the British Mycological Society 57(1): 41-48.
Dharmaputra, O.S., Ambarwati,
S., Retnowati, I. & Nurfadila,
N. 2015. Fungal infection and aflatoxin contamination in stored nutmeg (Myristica fragrans)
kernels at various stages of delivery chain in North Sulawesi Province. Biotropia 22(2): 129-139.
Dhaslin, Y.F., Issac, R.
& Prabha, M.L. 2019. Antioxidant, antimicrobial, and health benefits of
nutmeg. Drug Invention Today 12(1): 167-169.
Directorate General of Plantations. 2021. Statistical
of National Leading Estate Crops Commodity 2019-2021, edited by Gartina, D. & Sukriya, R.L.
pp. 1011.
Dorner, J.W. 2004. Biological control of
aflatoxin contamination of crops. Journal of Toxicology - Toxin Reviews 23(2-3):
425-450.
Farag, M.A., Mohsen, E. & Abd El
Nasser, G. 2018. Sensory metabolites profiling in Myristica fragrans (nutmeg) organs and in response to
roasting as analysed via chemometric tools. LWT 97: 684-692.
Farbo, M.G., Urgeghe,
P.P., Fiori, S., Marcello, A., Oggiano, S., Balmas, V., Hassan, Z.U., Jaoua,
S. & Migheli, Q. 2018. Effect of yeast volatile
organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal
of Food Microbiology 284: 1-10.
Felsenstein, J. 1985. Confidence limits on
phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791.
Freimstreakr, F.M., Rueda-Mejia, M.P., Tilocca, B. & Migheli, Q.
2019. Biocontrol yeasts: Mechanisms and applications. World Journal
Microbiology and Biotechnology 35(10): 1-19.
Golubev, W.I., Pfeiffer, I. & Golubeva, E.W. 2006. Mycocin production in Pseudozyma tsukubaensis, Mycopathologia 162(4): 313-316.
Gupta, R., Azhar,
M. & Kalam, M.A. 2020. An overview of Myristica fragrans (nutmeg) - its benefits and adverse
effects to humans. Indian Journal of Ayurveda and Integrative Medicine 2(4): 45-50.
Hartati, S., Wiyono, S., Hidayat, S.H. & Sinaga,
M.S. 2023. Potency and mechanism of yeast-like fungus Pseudozyma in controlling anthracnose on chili. Agrosainstek 7(1): 8-16.
Hyun, S.H., Lee, J.G., Park, W.J., Kim,
H.K. & Lee, J.S. 2014. Isolation and diversity of yeasts from fruits and
flowers of orchard in Sinam-Myeon of Yesan-Gun, Chungcheongnam-do, Korea. The Korean Journal
of Mycology 42(1): 21-27.
Ibrahim, M.A., Cantrell, C.L., Jeliazkova, E.A., Astatkie, T.
& Zheljazkov, V.D. 2020. Utilization of nutmeg (Myristica fragrans Houtt.) seed hydrodistillation time to produce essential oil fractions with varied compositions and pharmacological
effects. Molecules 25(3): 565.
Jaibangyang, S., Nasanit, R.
& Limtong, S. 2021. Effects of temperature and
relative humidity on Aflatoxin B1 reduction in corn grains and antagonistic
activities against Aflatoxin-producing Aspergillus flavus by a volatile
organic compound-producing yeast, Kwoniella heveanensisDMKU-CE82. BioControl 66(3): 433-443.
Jaibangyang, S., Nasanit, R.
& Limtong, S. 2020. Biological control of
aflatoxin-producing Aspergillus flavus by volatile organic
compound-producing antagonistic yeasts. BioControl 65(3): 377-386.
Johnson, J.S., Spakowicz,
D.J., Hong, B.Y., Petersen, L.M., Demkowicz, P.,
Chen, L., Leopold, S.R., Hanson, B.M., Agresta, H.O.,
Gerstein, M., Sodergren, E. & Weinstock, G.M. 2019. Evaluation of 16S rRNA
gene sequencing for species and strain-level microbiome analysis. Nature
Communications 10(1): 5029.
Joubert, P.M. & Doty, S.L. 2018.
Endophytic yeasts: Biology, ecology and applications. In Endophytes of
Forest Trees. Forestry Sciences, edited by Pirttilä,
A. & Frank, A. Springer: Cham.
Kim, S., Lee, H., Lee, S., Lee, J., Ha, J.,
Choi, Y., Yoon, Y. & Choi, K.H. 2017. Microbe-mediated aflatoxin
decontamination of dairy products and feeds. Journal of Dairy Science 100(2): 871-880.
Khunnamwong, P., Lertwattanasakul,
N., Jindamorakot, S., Suwannarach,
N., Matsui, K. & Limtong, S. 2020. Evaluation of
antagonistic activity and mechanisms of endophytic yeasts against pathogenic
fungi causing economic crop diseases. Folia Microbiologica 65(3): 573-590.
Konsue, W., Dethoup, T.
& Limtong, S. 2020. Biological control of fruit
rot and anthracnose of postharvest mango by antagonistic yeasts from economic
crops leaves. Microorganisms 8(3): 317.
Kurtzman, C.P., Fell, J.W. &. Boekhout, T. 2011. The Yeasts: A Taxonomic Study. Volume
2. 5th ed. San Diego: Elsevier. p. 516.
Lima, S.L., Colombo, A.L. & de Almeida
Jr., J.N. 2019. Fungal cell wall: Emerging antifungals and drug resistance. Frontiers
in Microbiology 10: 2573.
Ling, L., Tu, Y., Ma, W., Feng, S., Yang,
C., Zhao, Y., Wang, N., Li, Z., Lu, L. & Zhang, J. 2020. A potentially
important resource: Endophytic yeasts. World Journal of Microbiology and
Biotechnology 36(8): 110.
Liu, G.L., Chi, Z., Wang, G.Y., Wang, Z.P.,
Li, Y. & Chi, Z.M. 2015. Yeast killer toxins, molecular mechanisms of their
action, and their applications. Critical Reviews in Biotechnology 35(2):
222-234.
Mannazzu, I., Domizio,
P., Carboni, G., Zara, S., Zara, G., Comitini, F., Budroni, M. & Ciani, M. 2019. Yeast killer toxins: From ecological
significance to application. Critical Review in Biotechnology 39(5):
603-617.
Maryati, D.A. & Ferniah,
R.S. 2021. Molecular and phylogenetic analysis of inulinase-producing
yeast isolated from nira siwalan (Borassus flabellifer)
based on ITS sequences. Journal of Physics: Conference Series 1943(1):
012060.
Mimee, B., Labbe, C. & Bélanger,
R.R. 2009. Catabolism of flocculosin, an
antimicrobial metabolite produced by Pseudozyma flocculosa. Glycobiology 19(9): 995-1001.
Montesinos, E. & Bonaterra,
A. 2009. Microbial Pesticides. In Encyclopedia of Microbiology, 3rd ed., edited by Schaechter,
M. Amsterdam: Elsevier. pp. 110-120.
Moradi, M., Rohani,
M., Fani, S.R., Mosavian,
M.T.H., Probst, C. & Khodaygan, P. 2020.
Biocontrol potential of native yeast strains against Aspergillus flavus and aflatoxin production in pistachio. Food Additives and Contaminants -
Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 37(11):
1963-1973.
Nesci, A.V., Bluma,
R.V. & Etcheverry, M.G. 2005. In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. European
Journal of Plant Pathology 113(2): 159-171.
Palumbo, J.D., Baker, J.L. & Mahoney,
N.E. 2006. Isolation of bacterial antagonists of Aspergillus flavus from
almonds. Microbial Ecology 52(1): 45-52.
Parafati, L., Vitale, A., Restuccia,
C. & Cirvilleri, G. 2015. Biocontrol ability and
action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape. Food
Microbiology 47: 85-92.
Pesireron, M., Kaihatu,
S., Suneth, R. & Ayal,
Y. 2019. Perbaikan teknik pengendalian hama dan penyakit perkebunan pala Banda (Myristica fragrans Houtt.) di Maluku. Jurnal Penelitian Tanaman Industri25(1):
45-57.
Rahardiyan, D., Poluakan,
M. & Moko, E.M. 2020. Physico-chemical
properties of nutmeg (Myristica fragrans Houtt) of North
Sulawesi nutmeg. Fullerene Journal
Chemistry 5(1): 23-31.
Safitri, D., Wiyono, S.
& Soekarno, B.P.W. 2021. Mode of action of the endophytic yeast Rhodotorula mucilaginosa in controlling basal stem rot caused by Phytophthora capsici. IOP Conference Series: Earth and Environmental Science 667(1): 012050.
Saitou, N. & Nei,
M. 1987. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
Santos, A., Sanchez, A. & Marquira, D. 2004. Yeast as biological agent to control Botrytis cinerae. Microbiological Research 159(4):
331-339.
Sembiring, B. 2020. Reducing aflatoxin contamination
of nutmeg using drying methods. IOP Conference Series: Earth and
Environmental Science 418(1): 012030.
Sofiana, I., Susilowati,
D.N. & Putra, I.P. 2020. The potential of endophytic fungi as biocontrol
and phosphate solubilization agent in Capsicum anuum. Fungal Territory 3(3): 16-19.
Sukmawati, D., Andrianto,
M.H., Arman, Z., Ratnaningtyas, N.I., Al Husna, S.N., El-Enshasy, H.A., Dailin, D. & Kenawy, A.A.
2020. Antagonistic activity of phylloplane yeasts from Moringa oleifera Lam. leaves against Aspergillus flavus UNJCC F-30 from chicken feed. Indian
Phytopathology 73(1): 79-88.
Susilowati, D.N., Rahayuningsih,
S., Sofiana, I. & Radiastuti,
N. 2021. The potential of nutmeg’s microbes (Myristica fragrans Houtt.) as
antagonistic agents against Rigidoporus microporus. Journal of Suboptimal Lands 50(1):
1-13.
Suvarna, S., Dsouza, J., Ragavan, M.L. & Das, N. 2018. Potential probiotic
characterization and effect of encapsulation of probiotic yeast strains on
survival in simulated gastrointestinal tract condition. Food Science and
Biotechnology 27(3): 745-753.
Spadaro, D. & Droby,
S. 2016. Development of biocontrol products for postharvest diseases of fruit:
The importance of elucidating the mechanisms of action of yeast antagonists. Trends
in Food Science and Technology 47(1): 39-49.
Supriadi. 2017. Aflatoxin of nutmeg in Indonesia
and its control. Perspektif 16(2): 102-110.
Syaifudin, M., Jubaedah,
D., Yonarta, D. & Hastuti,
Z. 2019. DNA barcoding of snakeskin gourami Trichogaster pectoralis and blue gourami Trichogaster trichopterus based on cythocrome c oxidase subunit I (COI) gene. IOP Conference Series: Earth and
Environmental Science 348(1): 012031.
Tayel, A.A., El-Tras,
W., Moussa, S.H. & El-Agamy, M.A. 2013.
Antifungal action of Pichia anomala against
aflatoxigenic Aspergillus flavus and its application as a feed
supplement. Society of Chemical Industry 93(13): 3259-3263.
Wang, Q.M., Jia, J.H. & Bai, F.Y. 2006. Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov.,
novel ustilaginomycetous anamorphic yeast species
from plant leaves. International Journal of Systematic and Evolutionary
Microbiology 56(1): 289-293.
White, T.J., Bruns, T., Lee, S.J. &
Taylor, J.W. 1990. Amplification and
direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR
Protocols: A Guide to Methods and Applications, edited by Innis,
M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J.
San Diego: Academic Press. pp. 315-322.
World Health Organization. 2018. Food
Safety Digest. Aflatoxins. Department of Food Safety and Zoonoses Risk.
WHO/NHM/FOS/RAM/18.1
Zajc, J., Gostinčar,
C., Černoša, A. & Gunde-Cimerman,
N. 2019. Stress-tolerant yeasts: Opportunistic pathogenicity versus biocontrol
potential. Genes 10(1): 42.
Zang, W.J., Zhai,
H.C., Lv, Y.Y., Cai, J.P., Jia, F., Wang, J.S. &
Hu, Y.S. 2019. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibitory effect on fungi commonly associated with wheat kernel. Protein
Expression and Purification 154: 134-139.
Zhang, X., Li, B., Zhang, Z., Chen, Y.
& Tian, S. 2020. Antagonistic yeasts: A promising alternative to chemical
fungicides for controlling postharvest decay of fruit. Journal of Fungi 6(3): 158.
*Corresponding author; email:
yshid@yahoo.co.uk